

Welcome to push’s documentation!

push is a shell written in PHP.
It bears a few similarities with Boris [https://github.com/borisrepl/boris]
but aims at being easy to embed in broader libraries/projects.

Contents:

	Design
	Components

	User interaction

	Inter-process communication

	Messages
	Messages emitted by the manager

	Messages emitted by workers

Badges: [image: Travis-CI (unknown)] [http://travis-ci.org/fpoirotte/push] [image: Coveralls (unknown)] [https://coveralls.io/r/fpoirotte/push?branch=master]

[image:]

Design

Components

The shell is composed of two main pieces:

	A manager, implemented by the \\fpoirotte\\push\\Manager class

	Workers, implemented by the \\fpoirotte\\push\\Worker class

The manager handles interactions with the user (displaying the prompt,
reading commands, handling signals, displaying results, etc.) and feeds
commands and signals to the workers.

A worker process is spawned by the manager upon startup.
A new worker is spawned whenever a command needs to be executed, by forking
off the previous worker:

	If the command raises a fatal error or throws an exception, the new worker
dies. The old worker will be used to fork a new one on the next command.
A notice is displayed to the user by the manager to indicate the command
failed to execute properly.

	If the command completes without any fatal error, the old worker is killed
and the new worker will be used in its place in future commands.
The manager then displays the command’s result on the terminal.

This is done so to ensure that any side-effect the command may have had
(like setting a variable, creating a resource, etc.) is retained in the future.

User interaction

The \\fpoirotte\\push\\LineReader class provides the necessary means
to prompt the user for commands. This class also sets up a signal handler
so that any signal is properly passed from the manager to workers if necessary.

Inter-process communication

The manager and the worker processes communicate together asynchronously
using two distinct channels.

Messages/events

A custom protocol implemented by the \\fpoirotte\\push\\Protocol class
(the base class for both the manager and the worker processes) is used
by the manager and workers to notify the other end when various events
occur.

In this protocol, each peer can send an operation code recognized by the other
peer (represented on the wire as a single byte), followed by optional data,
which is passed on the wire as the payload’s size (expressed in bytes
and represented as an unsigned 16 bit integer encoded in big endian order),
followed by the actual payload represented as a string.

An empty payload is represented as a zero-length payload.
This means that it is not currently possible to distinguish between the absence
of a payload and a payload consisting of an empty string.
However, this is not an issue in practice as such a distinction is not actually
needed.

This protocol is used to represent various events, such as a signal being
received by the manager that needs some specific handling on the worker’s part.
For example, if the manager wants to send a SIGINT signal to the worker,
it sends the following byte sequence on the wire:

	\\x01 : operation code, as defined by the constants
in \\fpoirotte\\push\\Manager, minus the OP_ prefix;
in this case, \\x01 is the code for the “SIGNAL” operation

	\\x01 : payload size; in the case of a signal, the payload is encoded
as an ASCII string representing the signal’s number (ie. “2”)

	\\x32 : the signal’s number (2 for SIGINT) as a string

The receiving end then calls the appropriate handler for the operation,
by deriving its name from the operation’s name (ie. handleSIGNAL).
This handler is responsible for taking all necessary actions.

When the operation has been handled, the handler may choose to send back
its own message, but this is not mandatory (this only makes sense when the
remote peer is expecting some sort of results or acknowledgement).

Output and errors

The results of a command’s execution are passed from the workers to the manager
using the regular streams STDOUT and STDERR.
This is done so because some PHP operations automatically write to those
streams (eg. the echo / throw statements).

Internally, the workers’ STDIN, STDOUT & STDERR streams
are replaced with alternate streams (which are connected to the manager),
so that any data sent to those streams can easily be intercepted
and processed by the manager.

[image:]

Messages

This section describes the various messages that may be sent by each peer.

Messages emitted by the manager

COMMAND

This message is sent to the worker whenever a command (a line of statements
given by the user) needs to be processed.

This message’s payload consists of the actual statement(s) to process.

SIGNAL

This message is sent to the worker whenever the manager receives a signal
and wishes to pass it on to the worker.

This message’s payload consists of the signal number, represented as a string.
So for example, SIGTERM is represented by the following byte sequence:
\\x31\\x35 (ie. “15”).

Messages emitted by workers

READY

This message is sent by the very first worker after it has been spawned
and indicates that it is fully initialized and ready to process incoming
commands.

This message’s payload consists of the worker’s full path and line number,
in the form full/path/to/Worker.php(line).

START

This message is sent by a worker before it starts executing a command.

This message’s payload consists of the worker’s
PID.

END

This message is sent by a worker after the command is was processing
finished executing.

This message has no associated payload.

[image:]

apidoc/tab_b.png

apidoc/nav_g.png

apidoc/folderclosed.png

_static/comment-bright.png

apidoc/tab_h.png

apidoc/doxygen.png
doxy.ge

apidoc/nav_f.png

_static/comment-close.png

apidoc/tab_a.png

_static/file.png

apidoc/inherit_graph_1.png
fpoirottelpush\Manager

Tpoirotte\pushiProtocol ::

fpoirottelpush\Worker

_static/minus.png

apidoc/inherit_graph_0.png
fpoirottelpush!LineR eader

_static/comment.png

apidoc/folderopen.png

apidoc/graph_legend.png
Truncated

PublicBase

ProtectedBase

PrivateBase

Undocumented

Inherited

Templ< T >

)

<int>
|

Templ< int >

Used

apidoc/splitbar.png

apidoc/bc_s.png

apidoc/nav_h.png

_static/ajax-loader.gif

apidoc/classfpoirotte_1_1push_1_1Worker__inherit__graph.png
fpoirottelpush!Protocol

#$opoodes
#$socket

+_construct(
+ runOnce()
#receive(
#send)

i

fpoirottelpush\Worker

+OP_END
+ OP_READY
+ OP_START
#8child
#8data
#Sresult
#8scope

+_construct()
+Tun)

#cancel)
#evaluate)
#handleCOMMAND()
#handleSIGNALQ
#outputResult)

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to push's documentation!

 		Design

 		Components

 		User interaction

 		Inter-process communication

 		Messages/events

 		Output and errors

 		Messages

 		Messages emitted by the manager

 		COMMAND

 		SIGNAL

 		Messages emitted by workers

 		READY

 		START

 		END

_static/plus.png

apidoc/tab_s.png

apidoc/open.png

_static/up-pressed.png

apidoc/classfpoirotte_1_1push_1_1Protocol__inherit__graph.png
fpoirottelpush!Protocol

#S$opoodes
#$socket

+ _construct()
+ munOnce()
#receive)
#send()

i

fpoirattepushManager
+ OP_COMMAND fpoirotte\push!Worker
+ OPTSIGNAL
fevallocation +OP_END
$statements + OPTREADY
SworkerPid + OP_START
$working # fohd
$workerCls #§cata

" # Sresult
+ _constuct
 GatEvalLocation) #$scope
+isWorking) + _constuct()
+ prepare() + fun)
+ sendCommands() #cancel(
+ sendSignal() #evaluate)
#handeEND) #handleCOMMAND(
#handeREADY() #handieSIGNAL()
#handieSTART() # outputResut)
#replaceSpecialStream()
#sendWork()

apidoc/arrowright.png

apidoc/closed.png

_static/down.png

apidoc/sync_off.png
&)
<y

_static/up.png

apidoc/doc.png

apidoc/sync_on.png

apidoc/classfpoirotte_1_1push_1_1Manager__inherit__graph.png
fpoirottelpush!Protocol

#$opoodes
#$socket

+_construct(
+ runOnce()
#receive)
#send)

fpoirottelpush\Manager

+ OP_GOMMAND
+ OPSIGNAL
#$evallocation
#Sstatements
#$workerPid

$working
#$workerCls

+_construct()
+gatEvalLacation)

+ isWorking()

+ prepare()

+ sendCommands()

+ sendSignal(
#handleEND()
#handleREADY()
#handleSTART)
#replaceSpecialStream()
sendWork()

apidoc/bdwn.png

apidoc/arrowdown.png

